Most people would think of getting thermometers and placing them at various locations within a container, but do consider thermistors. These are simple devices that can be purchased from a number of companies online. To use thermistors, you actually measure the electrical resistance, which in turn is converted into temperature via some calibration curve or tables provided with those thermistors. These are also accurate devices, and are quite small so they do not significantly affect the heat flow of your experiment.
Keep in mind that it is possible to model the temperature distribution within containers, as was done in the example paper. A very good, user-friendly piece of software that is designed to solve partial differential equations (as in the diffusion equations for heat flow) is FlexPDE. It always makes for a strong project if theoretical predictions are compared to experimental studies.
Below are a number of ideas for research projects involving temperature distributions within containers:
- size of the container
- material from which container is made (makes for a good comparative study)
- shape of container (same volume, different geometry)
- location of heat source within the container
- transparent top with external heat source
- how heat distribution changes when just filled with air to having varying depths of water or other fluid inside the container
- time-dependent heat source variation (heat source changing its temperature gradually over time)
- different materials lining the walls of the container
- temperature distribution with and without air currents in the container
- temperature distribution with different objects inside the container: this then opens the door to numerous possibilities, where one could vary the size of the object; the material of the object; the number of objects, and then the distribution of multiple objects within the container
- one could have multiple containers which are connected with tubing for heat flow between the containers; how does the temperature distribution change over time and space
- depending on the material from which the container is made, does the external temperature have any effects? For example, if it is a metallic container, does the external temperature change the temperature distribution inside? What if one side sits on ice, and another side has a hot-plate attached?
- relative humidity variations within the container
- different air mixtures (with other gases) in the container
- various objects of different materials within the container; these could be placed inside in symmetric patterns, asymmetric; could be used as barriers; point would be to see how air flow and temperature varies with obstacles/barriers, as well as materials absorbing heat, etc. This allows for large amounts of variation, and original work.