What is CABS?

This site will help high school students and teachers find original, independent science research topics and questions that can be done without a professional lab...these can be done in a school lab or even in one's basement! The project ideas and research questions being developed and presented here have been vetted and could lead to true discoveries, and not just finding already known results. See our Welcome message. These are the types of projects that could be done and submitted to high school contest such as the Regeneron Science Talent Search or Siemens Science Competition, and be competitive. If you have an idea to share, or a question about one of the project ideas, contact us at vondracekm@eths202.org.

Pages (on the right side of the screen) have lists of ideas for different types of science research projects, and clicking on one of those ideas will take you to posts with details and all sorts of information about that type of project. Get more information about why there is a need for CABS!

Sunday, June 4, 2017

Drones could lead to all sorts of interesting, and original, local ecological studies!

With the cost of drones decreasing and their popularity soaring, this is good news for high schools and possible research projects and programs for teachers and students! Consider some options that exist now that did not just a couple years ago, and which will likely grab student attention and interest for possible science research projects:
  • Use of drones to study local areas of interest. Could include population studies of different types of animals, land coverage of different local plant species. Interesting studies could include doing this before and after a nearby construction project, and how that affects adjacent ecosystems. This could evolve into longer-term class/program studies, where students do the same counts year after year to measure any changes that occur. Drones have come down drastically in price, and could lead to all sorts of creative, novel studies like the ones mentioned! Be creative, think local - chances are a study you have in mind has not been done before, especially in rural settings. Check with your local town hall for records of what has and has not been done, do something original! 
  •  Included in the drone studies could be ongoing chemical analyses of soil and/or any water sources within the defined ecosystem. Could also include biological studies of soil and water sources, for example doing counts of different insects and organisms within the sample. Do these measurements change over time? If so, what is driving the changes? Teachers could develop a robust, long-term research program around this type of work. 

Sunday, May 14, 2017

Why an Upgrade for the ETHS Theory Center?

Some years ago, ETHS participated in a national contest (SuperQuest) that gave open-ended problems to teams of high school students, and they had to then use computer models to come up with some type of solution. This was back in the early 1990s, when the first computers and BASIC programming came to U.S. schools. ETHS was a winner in that contest each of its five years, and winning schools received the latest workstations that were available. These computers were housed in a room that was called the "Theory Center," and students could use the computers for science research.

Now, we have a space (old storage room) in between our Chem-Phys classrooms, where students can do work, but also relax during a free period to relieve stress. There is also an old (dating back to the 1960s), relatively small lab section that is mostly unused at the moment, behind the Theory Center section. 

We want to upgrade this space, and transform it into a modernized Research Center for ETHS students. The working name for this is The Center for the Advancement of Basement Science, which is where CABS comes from.This space would allow opportunities for training and original work outside of professional labs, such as what are potentially available at Northwestern University.

But I have big ideas for this, beyond just ETHS students 
doing some projects. 

1) ETHS Research Opportunities: Yes, up to now, the past five or six decades has seen hundreds of student research projects and submissions to national contests. But these have all been done, almost to a person, by students in the Chem-Phys Program. And this is because the teachers who have dedicated large amounts of time to research have been the Chem-Phys teachers. A dedicated space for science research would allow students from any other classes to try something of interest, and also without the need of a professional lab. This may be in experimental work, if we are able to get the upgrades completed; or in the analysis of countless online datasets from various fields of STEM (such as those ETHS students have accessed in the past in astrophysics research); or in computational work, where students either write their own code for simulations or make use of professional packages for simulation research. The latter two types of projects are done in the computer portion of the facility. Yet another interesting possibility to develop is for some experiments that may need certain equipment that is not common in high schools - we can collect datasets and make those available, or even try to create several remote experiments where students can access the hardware online and collect data, much like our iLab radioactivity lab run out of Queensland, Australia.

2) Development and Publication of Research Questions & Resources for ALL: The most difficult part of the research process at any level, but particularly at the beginning high school level, is finding novel, doable research questions and ideas for students to work on. The vast majority of schools around the country (and globally) DO NOT have access to professional labs and expertise, nor equipment, to do advanced research. The thing is, there are a large number of possible original projects that can be done with basic, cheap, easily accessible materials, but most don't know about it. 

      We will develop these project ideas and research questions in the CABS facility, as well as online resources that will teach others how to do the research, so they can take it on. 

We already have interest from numerous professors and graduate students at NU and other institutions, who will help with the development of research questions, research techniques that are doable at the high school level, analytical tools and how to videos, ask a scientist resources, accessibility to online datasets and databases (and how to videos for access/analysis of those datasets), accessibility to online simulation packages and appropriate resources, and working with ETHS students so they may develop some of the resources and even collaborate with peers at other schools to teach them how to do the research. This will be especially relevant and important for rural and inner-city schools.

For teachers at these other schools who do not have research backgrounds and want to learn or develop new programs for their schools, we want to provide resources for them, too. 

We are not aware of anything available at the high school level that would provide resources for research at such an extensive level. 

I want ETHS and our students to lead the way for the tens of thousands of schools that do not participate in the highest level contests to have that opportunity - all that is required are a few curious students who want to try research, but have no idea how to go about it. We will help! This could affect schools around the nation and ultimately around the world! Yes, I want to go global with this eventually! I am fortunate to be involved with national and global education groups, with many colleagues interested in getting their schools into real science research!

We have collaborators lining up at universities, national labs, local STEM industries, and national organizations such as the Society for Science and the Public (SSP) that administers the Science Talent Search, to help develop these resources and online platform, and we are trying to get the funding necessary to make it happen. This movement also provides a unique outreach option for those professional research groups looking for funding, such as required by the National Science Foundation (NSF). 

3) A modern Communications System: To take this national and to go global with this work, a good communications platform is needed within the CABS facility. Whether it is communicating online with NU personnel as our high school students learn how to access data or do analysis, or having our trained students and teachers work with other students and teachers at other schools we are helping or collaborating with, or whether we are working on other projects with sister schools around the world (my classes already are working with schools in Australia and Malawi, and new efforts are in the works with schools/NGOs in India, with many more possibilities brewing). 

The hope is by having our Chem-Phys classes take the initial lead in these efforts, we will get more of our own students from other classes interested, excited and involved in any and all aspects of what is being described here. I am hopeful that this will help get more students of color and girls involved in more advanced STEM activities, and possibly even enrolled in Chem-Phys or our standalone AP Chemistry and Physics classes, as well as AP Calculus and Computer Science classes. I am hopeful that by working globally, our students and community become aware of various global issues, and possibly even work on the notion of having our students evolve into global citizens - gaining insights and understanding of other cultures, our similarities and differences, and actually communicating and sharing and learning from each other as we collaborate. This is how it already works at the professional levels of STEM, and to have this experience while still in high school would be incredible! 

Yes, this is all quite ambitious, but I firmly believe entirely possible!! Let's give it a go by developing the facility and resources necessary to make it happen - to have ETHS become a national and global leader in the way high school science works!!

Friday, April 14, 2017

Advice for Students and Teachers: If you have any research institution nearby

I teach at Evanston Township High School. We are incredibly fortunate to have Northwestern University in town, and there are options for some number of students to work in professional research labs, or at least have professors in any number of fields of research to talk with about project ideas, lab techniques, analysis, and so on.

If you are in a similar situation, but are new to the notion of science research and have no idea about research questions that are doable or are looking to work in a lab, here is a recommendation. Go to the university or institutional page, find the pages for various departments, and then go to the faculty or research staff page. Check out each professor's web site, and they will almost certainly have brief descriptions about what their research group works on. Find your favorite 3 or 4 faculty members (i.e. that are most interesting to you), and have a teacher email them. I recommend a teacher for the first contact attempt simply because they are more likely to get a reply than a high school student - just the way it is.

But this is a good, effective way to quickly narrow a search for research ideas if you are trying to get into a lab!

Saturday, June 11, 2016

Why is there a need for CABS? Not many high schools have students doing original research

The most prestigious high school science competition in the United States is the Science Talent Search, presently sponsored by the Intel Corporation, and beginning next year by Regeneron. The Society for Science and the Public runs the contest. The way a senior in high school may enter this contest is by writing a paper describing science research the student has completed. There will be a top prize of $250,000 in scholarships given to a high school student - this is not for a typical science fair project, which may have been done numerous times and recycled from year to year. But rather for original research where the student made a legitimate discovery, as if the student were a graduate student working on a doctoral project.

This is where the problem lies.

Many high schools, and even middle schools and some elementary schools, run local science fairs. These are wonderful events where many students can do bigger projects than what is possible in a typical period of a science class. Students learn to take a question and investigate it through experimentation, and then analyze some data and draw conclusions based on those data. Great stuff! But the vast majority of these projects are things that have known answers and, if a student did want to submit to some of the bigger science contests, they would not likely make headway because of a lack of impact on a scientific field.

What this CABS site attempts is to provide the means of curious students and their teachers to get research project and question ideas that can lead to original results and discoveries. Such results could be written up for competitions, and/or might lead to a publication.

Some numbers:
In the 2016 Science Talent Search (STS), students from only 512 high schools from 43 states submitted papers. For those of us who have been involved and followed the STS over some number of years, most of the schools are annual repeaters. These schools have established research programs, which most often means there is a university and/or research center in the area where the students carry out their research projects. In other words, the vast majority of these papers describe research done in professional labs.

I searched how many high schools exist in the U.S., and while the exact number is not known or published, there seems to be on order of over 30,000 public and private high schools! Only 512 submitted original papers. So, only about 1.7% of high schools entered the STS, and gave their students a chance to be recognized at a national level, and possibly earn scholarship money for their work. Over 98% of students do not apparently have access to the STS, which means they do not know about the contest, or do not have the means of doing original work.

The point of all this is not to just get students trying contests. But this provides one measure of the lack of real research being done or being available to high school students. I suspect there are countless numbers of curious STEM students in the country who would, if a possibility arose, jump at the chance to do research and see if a new discovery is waiting in the wings.

This is to provide opportunities for any student to try the science process, learn a ton, push themselves through the frustrations and joys of research, and have that chance of the 'Eureka!' moment.

This CABS site is an attempt to provide the means for those students to take on a project of interest, where the answer is a true unknown at the moment!! And if seniors want to try and submit to the STS or other contests, they can and have a competitive project.  

Wednesday, December 30, 2015

Granular materials and funnels

Topic: Granular materials

Research question: What are the flow and mixing properties of granular materials flowing in funnels of different shapes and sizes?

Materials and Methods Outline:
You will need some sort of fine granular material. This can be sand, small spherical beads of bronze, copper, or other material. You will need some type of fan that can have a focused stream of blown air. Perhaps a hair dryer or shopvac. It is ideal to have something that has multiple options for wind speed.

The other main piece of equipment will be some sort of camera that has video capabilities. Video will be the main method of collecting data and making measurements. The key to making measurements from video is to have a ruler of some type in the video, which can be used to make calibrations within a program such as Tracker or LoggerPro. If you have access to any video hardware with high-speed options, such as on an iPhone 6 or many other cameras (instead of the standard 30 frames per second (fps), some can be turned to 60 fps, 120 fps, 240 fps, or even 480 fps or 1000 fps); note that the clarity and resolution of video gets worse with higher fps values - you will need to experiment with the settings to get the optimal balance for frame rate and clarity to get measurements you trust.

Possible parameters to test, and make your own:
  • Vertical funnel, single stream of grains sliding straight down as a control
  • What if funnel is angled relative to the vertical?
  • Two streams of identical grains sliding down on opposite sides, colliding/mixing properties
  • Two streams identical material, different diameters
  • Properties of falling down the funnel as function of diameter
  • Grains consisting of different materials: changes in flow patterns?
  • Flow properties as a function of angle of funnel
  • Flow properties as function of width of funnel spout
  • Flow properties as function of entry speed of grains
  • Appearance of avalanches, as a function of flow rate?
  • Have grains flow into funnel at angles so they flow down in spiral motion
  • What conditions must exist to clog the spout? 
  • Piling properties/patterns of grains pouring out of funnel spout into a container: can vary height the grains fall into container; size and shape of container
  • Some of the more interesting analyses would include two (or more) different sized grains, and mixing properties while changing the above conditions and parameters. Any segregation or stratification? 
  • One stream of grains mixing with a stream of water from the other side of a funnel: dynamics of the mixing as a function of flow rates of both grains and liquid; how do the dynamics and mixing vary as the above conditions and parameters are varied?
  • Perhaps some interesting changes in flow occur when the funnel is vertically vibrated at various frequencies and/or amplitudes
An interesting video of computer simulations of granular flow, courtesy of UNC. Get more ideas from what they show! Their website is here.

Links and Literature on this type of research:
- Free-flowing granular materials with two-way solid coupling (UNC math model used in simulations)
Rapid granular flows

Tuesday, December 29, 2015

Piles of Granular materials blown into walls

Topic: Granular Materials

Research Questions:
The primary idea behind this research is to see what the behavior and properties of wind-blown granular materials, such as sand or small beads, when those grains are i) blown from a pile, and ii) when those same grains collide with a wall not far away from the pile. There are numerous specific questions one can address with a system such as this, as listed below.

Try to make observations of how the pile is actually blown away. Do grains begin to be blown off the pile from the side closest to the fan, from the sides, or from the side farthest from the fan? Then, when grains hit the wall, what is the distribution of the grains as they land and begin to pile up again? Are there patterns and consistencies you observe if you do a number of trials? Is there any avalanching on either end of the process?

Materials and Methods Outline:
You will need some sort of fine granular material. This can be sand, small spherical beads of bronze, copper, or other material. You will need some type of fan that can have a focused stream of blown air. Perhaps a hair dryer or shopvac. It is ideal to have something that has multiple options for wind speed.

The other main piece of equipment will be some sort of camera that has video capabilities. Video will be the main method of collecting data and making measurements. The key to making measurements from video is to have a ruler of some type in the video, which can be used to make calibrations within a program such as Tracker or LoggerPro. If you have access to any video hardware with high-speed options, such as on an iPhone 6 or many other cameras (instead of the standard 30 frames per second (fps), some can be turned to 60 fps, 120 fps, 240 fps, or even 480 fps or 1000 fps); note that the clarity and resolution of video gets worse with higher fps values - you will need to experiment with the settings to get the optimal balance for frame rate and clarity to get measurements you trust.

Specific Research Questions can include:
  • Decomposition of pile as a function of airspeed from the fan or hair dryer/blower
  • How does changing the angle of airstream as it hits the pile affect decomposition?
  • The height of the pile
  • The diameter of the pile
  • The slope of the pile
  • The size of the grains making up the pile
  • If the pile is a random mix of two or more sizes of grains
  • If there is a small pile of one size grain, buried below another size grain
  • Effect of different sized, shaped obstacles between wind source and granular pile
  • What are the characteristics of any pile formed at the wall?
  • Any difference(s) between a straight wall and a curved wall?
  • What happens if the wall is tilted at difference angles? 
  • Change the material of the wall (coefficient of restitution between grain and wall)
  • How does the pile change as a function of distance between the pile and the wall?
  • What is there are two piles side by side?
  • What if a second pile is in between the first pile and the wall? 
  • If two different grains are used, is there any segregation and/or stratification in the pile that is formed? 
  • Is there avalanching of any kind on either side of the original pile(s)? In the formed pile at the wall?
  • Instead of symmetric pile (more coned shaped), what is the pile is a ramp with a flat end? Try piles of different geometric shapes.

Related articles and links in the literature (if you do not have access to an article, email us at vondracekm@eths202.org):

Sunday, December 27, 2015

An Example of Computational Science using Computer Simulations: Climate Models

Computational science is the newest type of science research, which evolved with the development of powerful computers. It allows us to work on very hard problems with mathematical models and theories that are too hard to solve with pencil and paper. Computational research is done in all branches of science, engineering, and even in business, medicine, city planning, and on and on...it is everywhere!

If you want to see a good example of one of the most challenging scientific problems in modern science, check out the TED talk by Gavin Schmidt, who is modeling the earth's climate. See what goes into a computer simulation in terms of the math, and then how the simulation can be tested for validity and accuracy based on real data and measurements from past climate trends. Finally, and this is the power of a simulation that has been tested and has a high level of confidence it is doing what we think it is doing, he shows how the simulation can make predictions for future climate trends depending on what values the parameters in the simulation are given.

Good computer simulations allow scientists to do computer experiments on phenomena and systems they otherwise could not experiment on. Imagine trying to figure anything out about the way a star works - we obviously cannot directly test a star, or star systems. But astrophysicists can run computer simulations using the known laws of physics and compare the results to what is really out there. If there is a good match with the simulation, then the simulations can be used to see what would happen under different conditions, and predict other objects and systems that may not have even been observed yet!